International Journal of COPD (Feb 2021)

The Prevalence of Chronic Obstructive Pulmonary Disease (COPD) and the Heterogeneity of Risk Factors in the Canadian Population: Results from the Canadian Obstructive Lung Disease (COLD) Study

  • Leung C,
  • Bourbeau J,
  • Sin DD,
  • Aaron SD,
  • FitzGerald JM,
  • Maltais F,
  • Marciniuk DD,
  • O'Donnell D,
  • Hernandez P,
  • Chapman KR,
  • Walker B,
  • Road JD,
  • Zheng L,
  • Zou C,
  • Hogg JC,
  • Tan WC

Journal volume & issue
Vol. Volume 16
pp. 305 – 320

Abstract

Read online

Clarus Leung,1 Jean Bourbeau,2 Don D Sin,1 Shawn D Aaron,3 J Mark FitzGerald,4 François Maltais,5 Darcy D Marciniuk,6 Denis O’Donnell,7 Paul Hernandez,8 Kenneth R Chapman,9 Brandie Walker,10 Jeremy D Road,4 Liyun Zheng,1 Carl Zou,1 James C Hogg,1 Wan C Tan1 On behalf of the CanCOLD Collaborative Research Group1Centre for Heart Lung Innovation, St Pauls Hospital, The University of British Columbia, Vancouver, BC, Canada; 2Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada; 3The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; 4Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, Canada; 5Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; 6Respiratory Research Centre, University of Saskatchewan, Saskatoon, Canada; 7Department of Medicine, Queen’s University, Kingston, Canada; 8Department of Medicine, Dalhousie University, Halifax, Canada; 9Toronto General Hospital Research Institute, University of Toronto, Toronto, Canada; 10Department of Medicine, University of Calgary (BW), Alberta, CanadaCorrespondence: Wan C TanCentre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, CanadaTel +1-604-682-2344 ext 62749Fax +1-604-806-9274Email [email protected]: To determine the spirometric-based prevalence of COPD across different regions in Canada and to evaluate the site heterogeneity of risk factors.Patients and Methods: In this cross-sectional, population-based study, random samples of non-institutionalized adults aged ≥ 40 years were generated by random digit dialling. Participants answered an interviewer-administered questionnaire and performed spirometry before and after bronchodilator administration. COPD was defined as post-bronchodilator FEV1/FVC < 0.70 (fixed ratio, FR) and as FEV1/FVC < 5th percentile (lower limits of normal, LLN). Separate logistic regression models were used to compute the risk (adjusted odds ratio, aOR) for COPD. I2 and Tau2 analyses were used to evaluate heterogeneity.Results: Out of 5176 (95%) participants, 4893 (47% male with mean age 56.6 years (95% confidence interval, 56.0– 57.2)) had spirometry that satisfied ATS criteria. The population prevalence of COPD was 16.2% (95% CI, 14.5– 17.8) by FR and 11.2% (95% CI, 9.7– 12.6) by LLN. Male predominance in prevalence was shown by FR but not by LLN criteria. Patient characteristics associated with an increased risk of COPD included: age (OR 1.56; 95% CI 1.33– 1.84); history of physician-diagnosed asthma (OR 3.30; 95% CI 2.42– 4.49); and childhood hospitalization for respiratory illness (OR 1.81; 95% CI 1.17– 2.80). In terms of smoking-related risk factors, current smoking status had the highest odds ratio (OR 3.49; 95% CI 2.55– 4.80). Variance in prevalence among sites was significantly reduced by adjusting for risk factors in Tau2 analyses. Higher odds of exposure for each risk factor was found in more severe COPD, suggesting that a higher risk could be linked to the development of severe disease.Conclusion: This study reports the population prevalence of COPD in nine urban cities which collectively represent the majority of the Canadian population and demonstrates that heterogeneity in prevalence among sites is substantially explained by variation in associated risk factors for COPD.Keywords: prevalence, heterogeneity, COPD

Keywords