Gong-kuang zidonghua (Jan 2021)
Research on strong anti-misalignmemt methods of double-coupled LCL topology ICPT system
Abstract
Inductively coupled power transmission (ICPT) systems cause fluctuations in output power and output voltage when the coil is offset.The existing anti-misalignmemt methods have the problems of relying too much on the system modeling and poor adaptivity. Most of the methods do not consider the impact on the system output characteristics when the coupling coefficient changes continuously. To address the above problems, taking the dual-coupled LCL topology ICPT system based on DDQ coils as the research object, the paper proposes a strong anti-misalignmemt method based on fuzzy adaptive control in variable universe. Firstly, the output power expression of the dual-coupled LCL topology ICPT system is derived from the circuit analysis, and the relationship between the output power, the coupling coefficient and system parameters is obtained. Secondly, by applying the finite element analysis software ANSYS, a three-dimensional magnetic field modeling of the DDQ coil is carried out to obtain the correspondence between the coupling coefficient and the coil offset. On the basis, the corresponding values of the three sets of offsets and the coupling coefficients are used as the data, and the square sum of deviations of the system output power fluctuations is taken as the objective function. Hence, the parameter optimization method of ICPT system based on adaptive particle swarm is proposed to obtain a set of optimal parameter values of the system under the minimum output power fluctuation and improve the anti-misalignmemt performance of the system to a certain extent. Finally, a fuzzy adaptive control method based on variable universe is used to achieve the purpose of quickly adjusting the load terminal voltage by dynamically adjusting the correction value of the PID control coefficient to make the system output higher power. The simulation results show that the method solves the problem of poor adaptivity of existing methods, adapts well to the working conditions with continuous changes of coupling coefficients, has better adaptability and control effect, improves the strong anti-misalignmemt performance of ICPT system, and maintains the basic constant output voltage at the load side.
Keywords