Nature Communications (Nov 2024)

In-context learning enables multimodal large language models to classify cancer pathology images

  • Dyke Ferber,
  • Georg Wölflein,
  • Isabella C. Wiest,
  • Marta Ligero,
  • Srividhya Sainath,
  • Narmin Ghaffari Laleh,
  • Omar S. M. El Nahhas,
  • Gustav Müller-Franzes,
  • Dirk Jäger,
  • Daniel Truhn,
  • Jakob Nikolas Kather

DOI
https://doi.org/10.1038/s41467-024-51465-9
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Medical image classification requires labeled, task-specific datasets which are used to train deep learning networks de novo, or to fine-tune foundation models. However, this process is computationally and technically demanding. In language processing, in-context learning provides an alternative, where models learn from within prompts, bypassing the need for parameter updates. Yet, in-context learning remains underexplored in medical image analysis. Here, we systematically evaluate the model Generative Pretrained Transformer 4 with Vision capabilities (GPT-4V) on cancer image processing with in-context learning on three cancer histopathology tasks of high importance: Classification of tissue subtypes in colorectal cancer, colon polyp subtyping and breast tumor detection in lymph node sections. Our results show that in-context learning is sufficient to match or even outperform specialized neural networks trained for particular tasks, while only requiring a minimal number of samples. In summary, this study demonstrates that large vision language models trained on non-domain specific data can be applied out-of-the box to solve medical image-processing tasks in histopathology. This democratizes access of generalist AI models to medical experts without technical background especially for areas where annotated data is scarce.