PLoS ONE (Jan 2013)

Treatment with n-3 polyunsaturated fatty acids overcomes the inverse association of vitamin D deficiency with inflammation in severely obese patients: a randomized controlled trial.

  • Bianca K Itariu,
  • Maximilian Zeyda,
  • Lukas Leitner,
  • Rodrig Marculescu,
  • Thomas M Stulnig

DOI
https://doi.org/10.1371/journal.pone.0054634
Journal volume & issue
Vol. 8, no. 1
p. e54634

Abstract

Read online

Obesity affects the vitamin D status in humans. Vitamin D and long-chain n-3 polyunsaturated fatty acids (PUFA) provide benefit for the prevention of fractures and cardiovascular events, respectively, and both are involved in controlling inflammatory and immune responses. However, published epidemiological data suggest a potential interference of n-3 PUFA supplementation with vitamin D status. Therefore, we aimed to investigate in a randomized controlled clinical trial whether treatment with long chain n-3 PUFA affects vitamin D status in severely obese patients and potential interrelations of vitamin D and PUFA treatment with inflammatory parameters. Fifty-four severely obese (BMI ≥ 40 kg/m2) non-diabetic patients were treated for eight weeks with either 3.36 g/d EPA and DHA or the same amount of butter fat as control. Changes in serum 25-hydroxy-vitamin D [25(OH)D] concentrations, plasma fatty acid profiles and circulating inflammatory marker concentrations from baseline to end of treatment were assessed. At baseline 43/54 patients were vitamin D deficient (serum 25(OH)D concentration <50 nmol/l). Treatment with n-3 PUFA did not affect vitamin D status (P = 0.91). Serum 25(OH)D concentration correlated negatively with both IL-6 (P = 0.02) and hsCRP serum concentration (P = 0.03) at baseline. Strikingly, the negative correlations of 25(OH)D with IL-6 and hsCRP were lost after n-3 PUFA treatment. In conclusion, vitamin D status of severely obese patients remained unaffected by n-3 PUFA treatment. However, abrogation of the inverse association of 25(OH)D concentration with inflammatory markers indicated that n-3 PUFA treatment could compensate for some detrimental consequences of vitamin D deficiency.ClinicalTrials.gov NCT00760760.