Horticulturae (Nov 2024)

Comprehensive Assessment of the Correlation Between Ancient Tea Garden Soil Chemical Properties and Tea Quality

  • Houqiao Wang,
  • Wenxia Yuan,
  • Qiaomei Wang,
  • Yuxin Xia,
  • Wang Chun,
  • Haoran Li,
  • Guochen Peng,
  • Wei Huang,
  • Baijuan Wang

DOI
https://doi.org/10.3390/horticulturae10111207
Journal volume & issue
Vol. 10, no. 11
p. 1207

Abstract

Read online

Understanding the correlation between soil chemical properties and tea quality is essential for the comprehensive management of ancient tea gardens. However, the specific links between these factors in ancient tea gardens remain underexplored. This study analyzes the soil chemical properties of four distinct research regions in Nanhua County to explore their effects on key chemical components in ancient tea garden teas, providing a scientific basis for improving the quality of ancient tea garden teas through soil management. Employing high performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS), the chemical components of tea and the chemical properties of the soil were meticulously quantified. Following these measurements, the integrated fertility index (IFI) and the potential ecological risk index (PERI) were evaluated and correlation analysis was conducted. The results revealed that ancient tea garden tea quality is closely linked to soil chemical properties. Soil’s total nitrogen (TN), total sulfur (TS), and available potassium (AK) negatively correlate with tea’s catechin gallate (CG) component and AK also with polyphenols. Most other soil properties show positive correlations with tea components. The research also evaluated soil heavy metals’ IFI and PERI. IFI varied significantly among regions. Hg’s high pollution index indicates ecological risks; Cd in Xiaochun (XC) region poses a moderate risk. PERI suggests moderate risk for XC and Banpo (BP), with other areas classified as low risk. Implementing reasonable fertilization and soil amelioration measures to enhance soil fertility and ensure adequate supply of key nutrients will improve the quality of ancient tea gardens. At the same time, soil management measures should effectively control heavy metal pollution to ensure the quality and safety of tea products. Insights from this study are crucial for optimizing soil management in ancient tea gardens, potentially improving tea quality and sustainability.

Keywords