Metals (Sep 2017)
Electrical Resistivity Measurement of Carbon Anodes Using the Van der Pauw Method
Abstract
The electrical resistivity of carbon anodes is an important parameter in the overall efficiency of the aluminum smelting process. The aim of this work is to explore the Van der Pauw (VdP) method as an alternative technique to the standard method, which is commonly used in the aluminum industry, in order to characterize the electrical resistivity of carbon anodes and to assess the accuracy of the method. For this purpose, a cylindrical core is extracted from the top of the anodes. The electrical resistivity of the core samples is measured according to the ISO 11713 standard method. This method consists of applying a 1 A current along the revolution axis of the sample, and then measuring the voltage drop on its side, along the same direction. Theoretically, this technique appears to be satisfying, but cracks in the sample that are generated either during the anode production or while coring the sample may induce high variations in the measured signal. The VdP method, as presented in 1958 by L.J. Van der Pauw, enables the electrical resistivity of any plain sample with an arbitrary shape and low thickness to be measured, even in the presence of cracks. In this work, measurements were performed using both the standard method and the Van der Pauw method, on both flawless and cracked samples. Results provided by the VdP method appeared to be more reliable and repeatable. Furthermore, numerical simulations using the finite element method (FEM) were performed in order to assess the effect of the presence of cracks and their thicknesses on the accuracy of the VdP method.
Keywords