Journal of Agricultural Sciences (Jul 2024)
A comprehensive Assessment of Sunflower Genetic Diversity Against Macrophomina phaseolina
Abstract
The sunflower is a significant oil crop that can be cultivated in various environmental conditions. Due to the changing climate, the pathogen profile has been altered, posing a threat to sunflower production. Among the various threats, charcoal rot, caused by the soil-borne fungus Macrophomina phaseolina (Tassi) Goid, is one of the most significant pathogen. This study aimed to investigate the resistance of 80 sunflower inbred lines to this pathogen using two inoculation methods and naturally infested area under field conditions in two years, 2019 and 2020. The results showed that both inoculation methods and occurrence of disease in naturally infested area (DNI) effectively differentiated between resistant and susceptible inbred lines, with the toothpick method being the most effective. Thirteen inbred lines were resistant according to all inoculation methods, and the others were moderately resistant moderately susceptible or susceptible regarding to inoculation method. The study identified five inbred lines (Ha 74, L1, LIV 10, MA SC 2 and PB 21) as the most resistant, making them important sources for breeding sunflower hybrids resistant to M. phaseolina. Their resistance was confirmed in 2020, highlighting their potential to combat the impact of climate change on sunflower production. This study represents a valuable insight into the control of M. phaseolina using sunflower resistant genotypes, especially since resistance findings have been lacking in other plant species.
Keywords