Microbiology Research (Feb 2023)

Bacterial Community Drives the Carbon Source Degradation during the Composting of <i>Cinnamomum camphora</i> Leaf Industrial Extracted Residues

  • Hanchang Zhou,
  • Lan Di,
  • Xiaoju Hua,
  • Tao Deng,
  • Xiaodong Wang

DOI
https://doi.org/10.3390/microbiolres14010019
Journal volume & issue
Vol. 14, no. 1
pp. 229 – 242

Abstract

Read online

The increasing production of industrial aromatic plant residues (IAPRs) are potentially environmental risky, and composting is a promising solution to resolve the coming IAPR problems. Carbon source degradation is a basic but important field in compost research; however, we still lack a clear understanding of carbon source degradation and the corresponding relationship to microbial community variation during IAPR composting, which hampers the improvement of IAPR composting efficiency and the promotion of this technology. In this study, samples were chosen on the first day, the 10th day, the 20th day, and the last day during the composting of Cinnamomum camphora leaf IAPRs, and the microbial community composition, main carbon source composition, and several enzyme activities were measured accordingly. The results showed that during composting, the hemicellulose had the highest reduction (200 g kg−1), followed by cellulose (143 g kg−1), lignin (15.5 g kg−1), starch (5.48 g kg−1), and soluble sugar (0.56 g kg−1), which supported that hemicellulose and cellulose were the main carbon source to microbes during composting. The relative abundance of the main bacterial phylum Firmicute decreased from 85.1% to 40.3% while Actinobactreia increased from 14.4% to 36.7%, and the relative abundance of main fungal class Eurotiomycetes decreased from 60.9% to 19.6% while Sordariomycetes increased from 16.9% to 69.7%. Though principal coordinates analysis found that both bacterial and fungal community composition significantly varied during composting (p Limnochordaceae and two were Savagea, which highlighted the potential core function in lignocellulose degradation provided by bacterial members, especially Limnochordaceae and Savagea. Thus, the results supported that during composting of Cinnamomum camphora leaf IAPRs, the degradation of dominate carbon sources, hemicellulose and cellulose, was mainly driven by bacterial community rather than fungal community. In addition, the bacterial originated xylanase and laccase played potentially core roles in the functional modules. This research clearly investigated the microbial dynamics of carbon source degradation during the composting of Cinnamomum camphora leaf IAPRs, and offers valuable information about and new insight into future IAPRs waste treatment.

Keywords