Scientific Reports (May 2024)

Spatiotemporal variations of ecosystem services in the Aral Sea basin under different CMIP6 projections

  • Jing He,
  • Yang Yu,
  • Lingxiao Sun,
  • Chunlan Li,
  • Haiyan Zhang,
  • Ireneusz Malik,
  • Malgorzata Wistuba,
  • Ruide Yu

DOI
https://doi.org/10.1038/s41598-024-62802-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 18

Abstract

Read online

Abstract The Aral Sea, located in Central Asia, has undergone significant reduction in surface area owing to the combined impacts of climate change and human activities. This reduction has led to a regional ecological crisis and profound repercussions on ecosystem services. Investigating the spatiotemporal variations and synergistic trade-offs of ESs in the Aral Sea basin is crucial for fostering the integrated development of the region’s socioeconomic ecology. This study utilizes the Future Land-Use Simulation and InVEST models to analyze future land-use scenarios, integrating CMIP6 projections to assess the quality of four key ecosystem services: water production, soil conservation, carbon storage, and habitat quality over two timeframes: the historical period (1995–2020) and the projected future (2021–2100). Employing Spearman correlation, the study explores the trade-offs and synergies among these ecosystem services. Findings reveal that the primary forms of land-use change in the Aral Sea basin are the reduction in water area (− 49.59%) and the rapid expansion of urban areas (+ 504.65%). Temporally, habitat quality exhibits a declining trend, while carbon storage shows an increasing trend, and water production and soil retention fluctuate initially decreasing and then increasing. Spatially, water production and carbon storage demonstrate an increasing trend from the northwest to the southeast. Habitat quality exhibits a higher spatial pattern in the southeast and south, contrasting with lower spatial patterns in the north and west. Low-level soil conservation is predominantly distributed in the northwest, while medium to low-level soil conservation is prevalent in the east of the basin. The trade-off and synergy analysis indicates that between 1995 and 2020, a trade-off relationship existed between carbon storage and habitat quality and water production, whereas synergies were observed between soil conservation and carbon storage, water production and habitat quality, and soil conservation. The correlation between water production and soil conservation emerges as the strongest, whereas the correlation between carbon storage and habitat quality appears to be the weakest. The dynamic spatiotemporal changes, trade-offs, and collaborative relationships of ESs constitute major aspects of ecosystem service research, holding substantial implications for the effective management of the regional ecological environment.

Keywords