فصلنامه علوم و فناوری فضایی (Oct 2013)
Assessment of Solution of the Boundary Layer Equations and Approximate Relations for Aeroheating of Axisymmetric Reentry Vehicles
Abstract
When a solver is used for analyzing the hypersonic reentry vehicles, high speed and accuracy of the solver results are the basic parameters in the design process. In the present study, the results obtained by solution of laminar boundary layer equations using integral matrix method and approximate method are assessed in aeroheating prediction around hypersonic axisymmetric reentry bodies. The results show that the applied methods have suitable accuracy in aeroheating and high computational speed for reentry vehicle design. Space marching method in numerical simulation of boundary layer equations and applying less grid point in the boundary layer due to use of integral matrix method rather than other methods efficiently decrease computational costs. Also, high robustness of approximate method in the heat flux prediction over the reentry surface makes it useful for design process.Using a special approximate relation for stagnation region improves the aero-thermodynamics results.