Virology Journal (Feb 2020)
Characterization of a recombinant pseudorabies virus expressing porcine parvovirus VP2 protein and porcine IL-6
Abstract
Abstract Background Porcine parvovirus (PPV) and pseudorabies virus (PRV) are the important etiological agents of swine infectious diseases, resulting in huge economic losses to the Chinese swine industry. Interleukin-6 (IL-6) has the roles to support host immune response to infections as a pleiotropic cytokine. It is essential to construct a live attenuated vaccine-based recombinant PRV that expresses PPV VP2 protein and porcine IL-6 for prevention and control of PRV and PPV. Methods The recombinant plasmid, pGVP2-IL6, was constructed by porcine IL-6 gene substituting for EGFP gene of the PRV transfer plasmid pGVP2-EGFP containing VP2 gene of PPV. Plasmid pGVP2-IL6 was transfected into swine testicle cells pre-infected with the virus rPRV-VP2-EGFP strain through homologous recombination and plaque purification to generate a recombinant virus rPRV-VP2-IL6. The recombinant PRV was further identified by PCR and DNA sequencing, and the expression of the VP2 protein and porcine IL-6 was analyzed by reverse transcription-PCR (RT-PCR) and Western blot. The virus titer was calculated according to Reed and Muench method. The immunogenicity of the recombinant virus was preliminarily evaluated in mice by intramuscular administration twice with the rPRV-VP2-IL6 at 4-week intervals. Results A recombinant virus rPRV-VP2-IL6 was successfully constructed and confirmed in this study. The properties of rPRV-VP2-IL6 were similar to the parental virus HB98 in terms of growth curve, morphogenesis and virus plaque sizes, and rPRV-VP2-IL6 was proliferated in different cell types. It induced specific antibodies against PPV as well as a strong increase of PPV-specific lymphocyte proliferation responses in mice immunized with rPRV-VP2-IL6, and provided partial protection against the virulent PPV challenge. rPRV-VP2-IL6 also induced a high level of neutralizing antibodies against PRV, and significantly reduced the mortality rate of (1 of 10) following virulent PRV challenge compared with the control (10 of 10). Conclusions The recombinant rPRV-VP2-IL6 might be a potential candidate vaccine against PRV and PPV infections in pigs.
Keywords