Earth System Science Data (Mar 2023)

Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system

  • E. Aragoneses,
  • M. García,
  • M. Salis,
  • L. M. Ribeiro,
  • E. Chuvieco

DOI
https://doi.org/10.5194/essd-15-1287-2023
Journal volume & issue
Vol. 15
pp. 1287 – 1315

Abstract

Read online

Accurate and spatially explicit information on forest fuels becomes essential to designing an integrated fire risk management strategy, as fuel characteristics are critical for fire danger estimation, fire propagation, and emissions modelling, among other aspects. This paper proposes a new European fuel classification system that can be used for different spatial scales and purposes (propagation, behaviour, and emissions). The proposed classification system is hierarchical and encompasses a total of 85 fuel types, grouped into six main fuel categories (forest, shrubland, grassland, cropland, wet and peat/semi-peat land, and urban), plus a nonfuel category. For the forest cover, fuel types include two vertical strata, overstorey and understorey, to account for both surface and canopy fuels. In addition, this paper presents the methods to map fuel types at the European scale, including the first-level of the classification system. Land cover, biogeographic datasets, and bioclimatic modelling were used. The final map, which is publicly available (https://doi.org/10.21950/YABYCN; Aragoneses et al., 2022a), included 20 fuel categories at 1 km spatial resolution. A first assessment of this map was performed using field information obtained from LUCAS (Land Use and Coverage Area frame Survey), complemented with high-resolution data. This validation exercise provided an overall accuracy of 88 % for the main fuel types and 81 % for all mapped fuel types. To facilitate the use of this fuel dataset in fire behaviour modelling, an assignment of fuel parameters to each fuel type was performed by developing a crosswalk to the standard fuel models defined by Scott and Burgan (2005; FBFMs – Fire Behavior Fuel Models), considering European climate diversity. This work has been developed within the framework of the FirEUrisk project, which aims to create a European-integrated strategy for fire danger assessment, reduction, and adaptation.