Journal of Water and Climate Change (May 2024)
A synergistic framework for dynamic water scarcity assessment: integrated blue and green water
Abstract
Dynamic assessment of water scarcity utilising blue and green water can enhance water resource management. The traditional water scarcity assessment mainly considers blue water, ignoring green water, for static evaluation. The improvement objective of this study is dynamically quantifying water scarcity, integrated blue and green water. This study proposed a framework to present an overview of water scarcity within multiple indicators and pinpoint water-stressed areas within an ever-changing process. The framework is based on the theorem of mutual change of quality and quantity to assess the spatiotemporal variability of blue and green water availability and to quantify water scarcity in watersheds. A case study was carried out in Taoer River Basin, a semiarid region of China, to demonstrate the use of the framework. The anthropogenic elements (such as water demand) and natural conditions were combined to quantify water scarcity, as measured by blue and green water scarcity indices. This study also analysed the variation of water scarcity on different spatiotemporal scales. The findings demonstrate that severe water scarcity has been occurring downstream with a tendency towards upstream of the watershed. Collectively, this study provides a useful tool for dynamic water scarcity assessment, helping develop policies to promote sustainable development. HIGHLIGHTS Proposed a coupled framework for quantifying water scarcity dynamically.; Integrated multiple indicators to assess the status of water scarcity efficiently.; Identified hot spots of water scarcity based on varied spatiotemporal analysis.;
Keywords