Sensory Polymeric Foams as a Tool for Improving Sensing Performance of Sensory Polymers
Blanca S. Pascual,
Saúl Vallejos,
Cipriano Ramos,
María Teresa Sanz,
José A. Reglero Ruiz,
Félix C. García,
José M. García
Affiliations
Blanca S. Pascual
Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
Saúl Vallejos
Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
Cipriano Ramos
Departamento de Biotecnología y Ciencia de los Alimentos, Área de Ingeniería Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
María Teresa Sanz
Departamento de Biotecnología y Ciencia de los Alimentos, Área de Ingeniería Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
José A. Reglero Ruiz
Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
Félix C. García
Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
José M. García
Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
Microcellular sensory polymers prepared from solid sensory polymeric films were tested in an aqueous Hg(II) detection process to analyze their sensory behavior. First, solid acrylic-based polymeric films of 100 µm thickness were obtained via radical copolymerization process. Secondly, dithizone sensoring motifs were anchored in a simple five-step route, obtaining handleable colorimetric sensory films. To create the microporous structure, films were foamed in a ScCO2 batch process, carried out at 350 bar and 60 °C, resulting in homogeneous morphologies with cell sizes around 5 µm. The comparative behavior of the solid and foamed sensory films was tested in the detection of mercury in pure water media at 2.2 pH, resulting in a reduction of the response time (RT) around 25% and limits of detection and quantification (LOD and LOQ) four times lower when using foamed films, due to the increase of the specific surface associated to the microcellular structure.