شیمی کاربردی روز (Sep 2023)

Preparation of new macroporous hydrogel by formation of high internal phase emulsions (HIPEs) template and investigation of controlled release of doxorubicin drug

  • Ghasem Rezanejad,
  • Parinaz Pargolghasemi,
  • Alireza Banaei

DOI
https://doi.org/10.22075/chem.2023.28790.2111
Journal volume & issue
Vol. 18, no. 68
pp. 251 – 270

Abstract

Read online

During recent years, the development of drug delivery systems based on polymers has created powerful carriers for smart application in nanomedicine for the treatment of diseases. Based on this, the design of polymers that contain various active functional groups to create a suitable interaction with the drug for its loading and release has been considered. Generally, more porosity for more drug loading, biocompatibility of the desired polymer and more water absorption lead to better performance in drug permeation and release.In this research, the preparation of a template with a high internal phase emulsion (PolyHIPEs) based on polyacrylamide grafting onto sodium alginate (SA) biopolymer via free radical polymerization and PolyHIPEs method of oil-in-water emulsion type is presented. In this work, porous hydrogel with high water swelling (absorption) was prepared by using different concentrations of acrylamide (AAm), surface active agent, cross-linking agent and initiator. The highest equilibrium water swelling value of synthetic porous hydrogel with HIPEs method was 280 g/g, while the water swelling value of prepared hydrogel without HIPEs method was 25 g/g. The open-cell porous hydrogel with water swelling of 280, has average pores of 5-10 μm, 200 nm windows and porosity of 80-85%. Modern instrumental methods such as SEM, AFM, FT-IR, BET and TGA were used to identify the porous hydrogel of PolyHIPEs. The loading and controlled release of the doxorubicin anticancer drug was performed on the optimum porous hydrogel in laboratory conditions. The results showed that smart SA-g-PAAm hydrogel is suitable for drug release at 41 °C and pH 5.5 (cancer cell conditions).

Keywords