Tropical and Subtropical Agroecosystems (Dec 2023)

EQUATIONS FOR BODY WEIGHT ADJUSTMENTS IN BLACK BELLY EWE LAMBS

  • Samuel Vázquez-Jiménez,
  • Daniel Vidal-Ramírez,
  • Rosario Salazar-Cuytun,
  • Ignacio Vázquez-Martínez,
  • Enrique Camacho-Pérez,
  • Antonio Leandro Chaves Gurgel,
  • Germani Adrián Muñoz-Osorio,
  • Alfonso Juventino Chay Canul

DOI
https://doi.org/10.56369/tsaes.5054
Journal volume & issue
Vol. 27, no. 1

Abstract

Read online

Background. As body weight (BW) is rarely determined on fasted animals in most production systems, the need to develop accurate mathematical models for adjusting BW has been identified. Objective. To evaluate models for estimating shrunk body weight (SBW) and empty body weight (EBW) in Black Belly growing ewe lambs raised in tropical conditions. Methodology. Data of sixty Black Belly ewe lambs, between four to eight months of age with a mean BW of 26.55± 3.92 kg (± SD) were used. The SBW was estimated based on the BW without fasting (fed) and the EBW based on SBW through three models: 1. Linear; 2.-Linear without intercept and 3.- Exponential. The predictive capacity of the models was evaluated by cross-validation. Results. The correlation coefficients between BW and SBW and SB and EBW were high (r = 0.94; <0.0001). The coefficients of determination (r2) for the equations between BW and SBW were 0.89 (P<0.001); and 0.86 (P<0.001) for the relationship between SBW and EBW. Based on the AIC (26.81) Eq. 2 described the relationship between BW and SBW better than Eq. 1, (AIC = 28.44) and Eq. 3 (AIC =28.35). The final model to estimate SBW as a function of BW was: SBW (kg): 0.96 (±0.001***) × BW. With respect to the SBW and EBW ratio, Equation 5, was better than the linear Eq. 4, (AIC = 33.01) and Eq. 6 (AIC = 33.35). The following model was: EBW (kg): 0.81 (± 0.06***) × SBW. The cross-validation of the equation of the relationship between BW and SBW showed that Eq. 1 had a higher r2 (0.87), and lower RMSEP and MAE than Eq. 2 and Eq. 3. Also, the equation of the relationship between SBW and EBW the cross-validation revealed that Eqs. 4 and 6 had the higher r2 (0.82), and lower RMSEP and MAE and tended to be more accurate than Eq. 5. Implications. The results obtained in present study contributes to the development of mathematical models for more accurate body weight adjustments in tropical sheep. Conclusion. The equations developed and evaluated in the present study revealed that the linear relationship between BW and SBW, and the linear and exponential relationship between SBW and EBW can be used to body weight adjustments in growing Black Belly ewe lambs. It's worth noting that this confirms that the SBW can be calculated using an adjustment factor of 0.96 FBW.

Keywords