Heliyon (Dec 2022)
The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models
Abstract
The theory of multilevel hierarchical data Expectation Maximization (EM)-algorithm is introduced via discrete time Markov chain (DTMC) epidemic models. A general model for a multilevel hierarchical discrete data is derived. The observed sample Y in the system is a stochastic incomplete data, and the missing data Z exhibits a multilevel hierarchical data structure. The EM-algorithm to find ML-estimates for parameters in the stochastic system is derived. Applications of the EM-algorithm are exhibited in the two DTMC models, to find ML-estimates of the system parameters. Numerical results are given for influenza epidemics in the state of Georgia (GA), USA.