Symmetry (Oct 2021)

Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter

  • Yong-Liang Ma,
  • Mannque Rho

DOI
https://doi.org/10.3390/sym13101888
Journal volume & issue
Vol. 13, no. 10
p. 1888

Abstract

Read online

We review a new development on the possible direct connection between the topological structure of the Nf=1 baryon as a FQH droplet and that of the Nf≥2 baryons (such as nucleons and hyperons) as skyrmions. This development suggests a possible “domain-wall (DW)” structure of compressed baryonic matter at high density expected to be found in the core of massive compact stars. Our theoretical framework is anchored on an effective nuclear effective field theory that incorporates two symmetries either hidden in the vacuum in QCD or emergent from strong nuclear correlations. It presents a basically different, hitherto undiscovered structure of nuclear matter at low as well as high densities. Hidden “genuine dilaton (GD)” symmetry and hidden local symmetry (HLS) gauge-equivalent at low density to nonlinear sigma model capturing chiral symmetry, put together in nuclear effective field theory, are seen to play an increasingly important role in providing hadron–quark duality in baryonic matter. It is argued that the FQH droplets could actually figure essentially in the properties of the vector mesons endowed with HLS near chiral restoration. This strongly motivates incorporating both symmetries in formulating “first-principles” approaches to nuclear dynamics encompassing from the nuclear matter density to the highest density stable in the Universe.

Keywords