Three-Step Synthesis of the Antiepileptic Drug Candidate Pynegabine
Yi-Jing Sun,
Ya-Ling Gong,
Shi-Chao Lu,
Shi-Peng Zhang,
Shu Xu
Affiliations
Yi-Jing Sun
State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
Ya-Ling Gong
State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
Shi-Chao Lu
State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
Shi-Peng Zhang
State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
Shu Xu
State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
Pynegabine, an antiepileptic drug candidate in phase I clinical trials, is a structural analog of the marketed drug retigabine with improved chemical stability, strong efficacy, and a better safety margin. The reported shortest synthetic route for pynegabine contains six steps and involves the manipulation of highly toxic methyl chloroformate and dangerous hydrogen gas. To improve the feasibility of drug production, we developed a concise, three-step process using unconventional methoxycarbonylation and highly efficient Buchwald–Hartwig cross coupling. The new synthetic route generated pynegabine at the decagram scale without column chromatographic purification and avoided the dangerous manipulation of hazardous reagents.