Информатика и автоматизация (Jun 2024)

Восстановление аэрофотоснимков сверхвысокого разрешения с учетом семантических особенностей

  • Margarita Favorskaya,
  • Andrey Pakhirka

DOI
https://doi.org/10.15622/ia.23.4.5
Journal volume & issue
Vol. 23, no. 4
pp. 1047 – 1076

Abstract

Read online

В настоящее время происходит активное развитие технологий обработки изображений дистанционного зондирования, включающих как спутниковые снимки, так и аэрофотоснимки, полученные от видеокамер беспилотных летательных аппаратов. Зачастую такие снимки имеют артефакты, связанные с низким разрешением, размытостью фрагментов изображения, наличием шумов и т.д. Одним из способов преодоления таких ограничений является применение современных технологий для восстановления снимков сверхвысокого разрешения на основе методов глубокого обучения. Особенностью аэрофотоснимков является представление текстуры и структурных элементов более высокого разрешения, чем на спутниковых снимках, что объективно способствует лучшим результатам восстановления. В статье приводится классификация методов сверхвысокого разрешения с учетом основных архитектур глубоких нейронных сетей, а именно сверточных нейронных сетей, визуальных трансформеров и генеративно-состязательных сетей. В статье предлагается метод восстановления аэрофотоснимков сверхвысокого разрешения с учетом семантических особенностей SemESRGAN за счет использования на этапе обучения дополнительной глубокой сети для семантической сегментации. При этом минимизируется общая функция потерь, включающая состязательные потери, потери на уровне пикселов и потери воспирятия (сходства признаков). Для экспериментов использовались шесть наборов аннотированных аэрофотоснимков и спутниковых снимков CLCD, DOTA, LEVIR-CD, UAVid, AAD и AID. Было выполнено сравнение результатов восстановления изображений предложенным методом SemESRGAN с базовыми архитектурами сверточных нейронных сетей, визуальных трансформеров и генеративно-состязательных сетей. Получены сравнительные результаты восстановления изображений с применением объективных метрик PSNR и SSIM, что позволило оценить качество восстановления с использованием различных моделей глубоких сетей.

Keywords