Applied Sciences (Mar 2023)

Extraction of Flaw Signals from the Mixed 1-D Signals by Denoising Autoencoder

  • Seung-Eun Lee,
  • Jinhyun Park,
  • Hak-Joon Kim,
  • Sung-Jin Song

DOI
https://doi.org/10.3390/app13063534
Journal volume & issue
Vol. 13, no. 6
p. 3534

Abstract

Read online

Ultrasonic testing (UT) is one of the most popular non-destructive evaluation (NDE) techniques used in many industries to evaluate structural integrity. The commonly used NDE techniques are basic inspection techniques, such as visual testing (VT), penetration testing (PT), and magnetic testing (MT), and advanced inspection techniques, such as UT, radiography testing (RT), eddy current testing (ECT), and phased array ultrasonic testing (PAUT). Among the numerous advanced techniques, ultrasonic testing (UT) is usually used for the inspection of welds in various industries. However, the application of UT still has some shortcomings to overcome. One major shortcoming that reduces the precision of UT is the extra signals from the geometrical interface of a specimen. UT uses the reflection indications of the ultrasonic beam. However, the reflection signals from the welding interface and geometry along with the target flaw signal produce mixed signals. The inspectors use a 1-D reflection outcome called the ultrasonic A-scan to evaluate the welding integrity. The mixed ultrasonic A-scan signals are often very difficult to analyze because inspectors must distinguish the target flaw signal of welding from the mixed ultrasonic A-scan signal, which includes the flaw indication as well as the background signal. Therefore, a method to distinguish between the flaw signal and the background signal must be developed for the efficiency of UT. Autoencoder is an artificial neural network that is made for feature extraction from the input. Denoising autoencoder (DAE) is one of the derivative models of the autoencoder which adds or eliminates random noise signals to extract the prominent features. DAE is already widely used in the denoising of images and sound data. The characteristics of DAE are used in this research to distinguish the ultrasonic flaw signal from the mixed ultrasonic A-scan signal. For the training, 2463 mixed A-scan signals were obtained from 45 different standard blocks in which 5 different types of flaws were embedded. For testing, we used 1000 mixed A-scan signals. The performance of the network was evaluated using a point-by-point comparison method. The autoencoder was trained to denoise the background signal from the mixed ultrasonic A-scan, and the target flaw signal was extracted from the original A-scan signal.

Keywords