Materials (Jan 2014)

Luminescent Properties of Surface Functionalized BaTiO3 Embedded in Poly(methyl methacrylate)

  • Sebastian Requena,
  • Srijan Lacoul,
  • Yuri M. Strzhemechny

DOI
https://doi.org/10.3390/ma7010471
Journal volume & issue
Vol. 7, no. 1
pp. 471 – 483

Abstract

Read online

As-received BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (APTES) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO3 powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.

Keywords