Cardiology Research and Practice (Jan 2020)

Upregulation of MicroRNA-125b Leads to the Resistance to Inflammatory Injury in Endothelial Progenitor Cells

  • Ke Yang,
  • Xing Liu,
  • Wanwen Lin,
  • Yuanyuan Zhang,
  • Chaoquan Peng

DOI
https://doi.org/10.1155/2020/6210847
Journal volume & issue
Vol. 2020

Abstract

Read online

Objectives. MicroRNA-125b (miR-125b) has been recognized as one of the key regulators of the inflammatory responses in cardiovascular diseases recently. This study sought to dissect the role of miR-125b in modulating the function of endothelial progenitor cells (EPCs) in the inflammatory environment of ischemic hearts. Methods. EPCs were cultured and transfected with miR-125b mimic and negative control mimic. Cell migration and adhesion assays were performed after tumor necrosis factor-α (TNF-α) treatment to determine EPC function. Cell apoptosis was analyzed by flow cytometry. The activation of the NF-κB pathway was measured by western blotting. EPC-mediated neovascularization in vivo was studied by using a myocardial infarction model. Results. miR-125b-overexpressed EPCs displayed improved cell migration, adhesion abilities, and reduced cell apoptosis compared with those of the NC group after TNF-α treatment. miR-125b overexpression in EPCs ameliorated TNF-α-induced activation of the NF-κB pathway. Mice transplanted with miR-125b-overexpressed EPCs showed improved cardiac function recovery and capillary vessel density than the ones transplanted with NC EPCs. Conclusions. miR-125b protects EPCs against TNF-α-induced inflammation and cell apoptosis by attenuating the activation of NF-κB pathway and consequently improves the cardiac function recovery and EPC-mediated neovascularization in the ischemic hearts.