Energies (Feb 2019)
Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil
Abstract
In this work, different turbulence models were applied to predict the performance of a DU-06-W-200 airfoil, a typical choice for vertical-axis wind turbines (VAWT). A compromise between simulation time and results was sought, focusing on the prediction of aerodynamic forces and the developed flow field. Reynolds-averaged Navier⁻Stokes equation (U-RANS) models and Scale-Resolving Simulations (SRS), such as Scale-Adaptive Simulation (SAS) and Detached Eddy Simulation (DES), were tested, with k − ω -based turbulence models providing the most accurate predictions of aerodynamic forces. A deeper study of three representative angles of attack (5 ° , 15 ° , and 25 ° ) showed that U-RANS models accurately predict aerodynamic forces with low computational costs. SRS modeling generates more realistic flow patterns: roll-up vortices, vortex packets, and stall cells have been identified, providing a richer unsteady flow-field description. The power spectrum density of velocity at 15 ° has confirmed a broadband spectrum in DES simulations, with a small peak at a Strouhal number of 0.486. Finally, indications regarding the selection of the turbulence model depending on the desired outcome (aerodynamic forces, airfoil flow field, or VAWT simulation) are provided, tending toward U-RANS models for the prediction of aerodynamic forces, and SRS models for flow-field study.
Keywords