Journal of Medical Internet Research (Sep 2020)

Digital Interventions for Screening and Treating Common Mental Disorders or Symptoms of Common Mental Illness in Adults: Systematic Review and Meta-analysis

  • Sin, Jacqueline,
  • Galeazzi, Gian,
  • McGregor, Elicia,
  • Collom, Jennifer,
  • Taylor, Anna,
  • Barrett, Barbara,
  • Lawrence, Vanessa,
  • Henderson, Claire

DOI
https://doi.org/10.2196/20581
Journal volume & issue
Vol. 22, no. 9
p. e20581

Abstract

Read online

BackgroundDigital interventions targeting common mental disorders (CMDs) or symptoms of CMDs are growing rapidly and gaining popularity, probably in response to the increased prevalence of CMDs and better awareness of early help-seeking and self-care. However, no previous systematic reviews that focus on these novel interventions were found. ObjectiveThis systematic review aims to scope entirely web-based interventions that provided screening and signposting for treatment, including self-management strategies, for people with CMDs or subthreshold symptoms. In addition, a meta-analysis was conducted to evaluate the effectiveness of these interventions for mental well-being and mental health outcomes. MethodsTen electronic databases including MEDLINE, PsycINFO, and EMBASE were searched from January 1, 1999, to early April 2020. We included randomized controlled trials (RCTs) that evaluated a digital intervention (1) targeting adults with symptoms of CMDs, (2) providing both screening and signposting to other resources including self-care, and (3) delivered entirely through the internet. Intervention characteristics including target population, platform used, key design features, and outcome measure results were extracted and compared. Trial outcome results were included in a meta-analysis on the effectiveness of users’ well-being and mental health outcomes. We also rated the meta-analysis results with the Grading of Recommendations, Assessment, Development, and Evaluations approach to establish the quality of the evidence. ResultsThe electronic searches yielded 21 papers describing 16 discrete digital interventions. These interventions were investigated in 19 unique trials including 1 (5%) health economic study. Most studies were conducted in Australia and North America. The targeted populations varied from the general population to allied health professionals. All interventions offered algorithm-driven screening with measures to assess symptom levels and to assign treatment options including automatic web-based psychoeducation, self-care strategies, and signposting to existing services. A meta-analysis of usable trial data showed that digital interventions improved well-being (3 randomized controlled trials [RCTs]; n=1307; standardized mean difference [SMD] 0.40; 95% CI 0.29 to 0.51; I2=28%; fixed effect), symptoms of mental illness (6 RCTs; n=992; SMD −0.29; 95% CI −0.49 to −0.09; I2=51%; random effects), and work and social functioning (3 RCTs; n=795; SMD −0.16; 95% CI −0.30 to −0.02; I2=0%; fixed effect) compared with waitlist or attention control. However, some follow-up data failed to show any sustained effects beyond the post intervention time point. Data on mechanisms of change and cost-effectiveness were also lacking, precluding further analysis. ConclusionsDigital mental health interventions to assess and signpost people experiencing symptoms of CMDs appear to be acceptable to a sufficient number of people and appear to have enough evidence for effectiveness to warrant further study. We recommend that future studies incorporate economic analysis and process evaluation to assess the mechanisms of action and cost-effectiveness to aid scaling of the implementation.