Opuscula Mathematica (Jan 2006)

Application of Green's operator to quadratic variational problems

  • Nikolay V. Azbelev,
  • Vadim Z. Tsalyuk

Journal volume & issue
Vol. 26, no. 2
pp. 243 – 256

Abstract

Read online

We use Green's function of a suitable boundary value problem to convert the variational problem with quadratic functional and linear constraints to the equivalent unconstrained extremal problem in some subspace of the space \(L_2\) of quadratically summable functions. We get the necessary and sufficient criterion for unique solvability of the variational problem in terms of the spectrum of some integral Hilbert-Schmidt operator in \(L_2\) with symmetric kernel. The numerical technique is proposed to estimate this criterion. The results are demonstrated on examples: 1) a variational problem with deviating argument, and 2) the problem of the critical force for the vertical pillar with additional support point (the qualities of the pillar may vary discontinuously along the pillar's axis).

Keywords