Advanced Science (Nov 2023)

Polylactide Degradation Activates Immune Cells by Metabolic Reprogramming

  • Chima V. Maduka,
  • Mohammed Alhaj,
  • Evran Ural,
  • Oluwatosin M. Habeeb,
  • Maxwell M. Kuhnert,
  • Kylie Smith,
  • Ashley V. Makela,
  • Hunter Pope,
  • Shoue Chen,
  • Jeremy M. Hix,
  • Christiane L. Mallett,
  • Seock‐Jin Chung,
  • Maxwell Hakun,
  • Anthony Tundo,
  • Kurt R. Zinn,
  • Kurt D. Hankenson,
  • Stuart B. Goodman,
  • Ramani Narayan,
  • Christopher H. Contag

DOI
https://doi.org/10.1002/advs.202304632
Journal volume & issue
Vol. 10, no. 31
pp. n/a – n/a

Abstract

Read online

Abstract Polylactide (PLA) is the most widely utilized biopolymer in medicine. However, chronic inflammation and excessive fibrosis resulting from its degradation remain significant obstacles to extended clinical use. Immune cell activation has been correlated to the acidity of breakdown products, yet methods to neutralize the pH have not significantly reduced adverse responses. Using a bioenergetic model, delayed cellular changes were observed that are not apparent in the short‐term. Amorphous and semi‐crystalline PLA degradation products, including monomeric l‐lactic acid, mechanistically remodel metabolism in cells leading to a reactive immune microenvironment characterized by elevated proinflammatory cytokines. Selective inhibition of metabolic reprogramming and altered bioenergetics both reduce these undesirable high cytokine levels and stimulate anti‐inflammatory signals. The results present a new biocompatibility paradigm by identifying metabolism as a target for immunomodulation to increase tolerance to biomaterials, ensuring safe clinical application of PLA‐based implants for soft‐ and hard‐tissue regeneration, and advancing nanomedicine and drug delivery.

Keywords