Stem Cell Research & Therapy (Nov 2024)
Cisplatin-encapsulated TRAIL-engineered exosomes from human chorion-derived MSCs for targeted cervical cancer therapy
Abstract
Abstract Background Cisplatin (DDP) is an efficacious and widely applied chemotherapeutic drug for cervical cancer patients who are diagnosed as metastatic and inoperable, or desiring fertility preservation. Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) selectively triggers cancer cells apoptosis by binding to cognate death receptors (DR4 and DR5). Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been regarded as ideal drug carriers on account of their nanoscale, low toxicity, low immunogenicity, high stability, biodegradability, and abundant sources. Methods Human chorion-derived mesenchymal stem cells (hCD-MSCs) were isolated by adherent culture method. TRAIL-engineered hCD-MSCs (hCD-MSCsTRAIL) were constructed by lentivirus transfection, and its secreted Exo (hCD-MSCs-ExoTRAIL) were acquired by differential centrifugation and confirmed to overexpress TRAIL by western blotting. Next, nanoscale drug delivery systems (DDP & hCD-MSCs-ExoTRAIL) were fabricated by loading DDP into hCD-MSCs-ExoTRAIL via electroporation. The CCK-8 assay and flow cytometry were conducted to explore the proliferation and apoptosis of cervical cancer cells (SiHa and HeLa), respectively. Cervical cancer-bearing nude mice were constructed to examine the antitumor activity and biosafety of DDP & hCD-MSCs-ExoTRAIL in vivo. Results Compared with hCD-MSCs-Exo, hCD-MSCs-ExoTRAIL weakened proliferation and enhanced apoptosis of cervical cancer cells. DDP & hCD-MSCs-ExoTRAIL were proved to retard cervical cancer cell proliferation and propel cell apoptosis more effectively than DDP or hCD-MSCs-ExoTRAIL alone in vitro. In cervical cancer-bearing mice, DDP & hCD-MSCs-ExoTRAIL evidently hampered tumor growth, and its role in inducing apoptosis was mechanistically associated with JNK/p-c-Jun activation and survivin suppression. Moreover, DDP & hCD-MSCs-ExoTRAIL showed favorable biosafety in vivo. Conclusions DDP & hCD-MSCs-ExoTRAIL nanoparticles exhibited great promise for cervical cancer treatment as an Exo-based chemo-gene combinational therapy in clinical practice. Graphical abstract
Keywords