Journal of Nanobiotechnology (Jul 2020)
Multifunctional TPP-PEG-biotin self-assembled nanoparticle drug delivery-based combination therapeutic approach for co-targeting of GRP78 and lysosome
Abstract
Abstract Background In this study, a multifunctional tetraphenylporphyrin (TPP) conjugated polyethylene glycol with biotin (TPP-PEG-biotin) as a photo-dynamic therapy (PDT) material encapsulating a ruthenium complex 1 (Ru-1) was fabricated as self-assembled nanoparticle (Ru-1@TPP-PEG-biotin SAN) to co-target glucose-regulated protein 78 (GRP78) and the lysosome as a new anti-cancer therapeutic strategy. Results The MTT assay results reveals the enhanced anticancer activity of the Ru-1@TPP-PEG-biotin SANs due to the co-targeting of the GRP78 and lysosome. The Ru-1@TPP-PEG-biotin reduced level of GRP78 and lysosomal ceramide that contributed to the stability of the lysosomal membrane. The endoplasmic reticulum (ER) stress concomitant with the inhibition of GRP78 was clearly monitored by the phosphorylation of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and inositol-requiring enzyme 1 α (IRE1α) kinases to indicate the activation of the unfolded protein response (UPR) signaling using immunofluorescence assay. On the other hand, the degradation of the lysosome was observed through PDT action by the Ru-1@TPP-PEG-biotin SAN treatment. This was confirmed by the co-localization assay showing the disappearance of cathepsin D and lysosomal-associated membrane protein 1 (LAMP1) in the lysosome. Conclusions Considering lysosome-mediated autophagy is an effective cancer cell survival mechanism, the degradation of the lysosome along with GRP78 inhibition by the Ru-1@TPP-PEG-biotin SAN combination therapy is suggested as a new co-targeting cancer treatment.
Keywords