Beilstein Journal of Organic Chemistry (Nov 2023)

Charge carrier transport in perylene-based and pyrene-based columnar liquid crystals

  • Alessandro L. Alves,
  • Simone V. Bernardino,
  • Carlos H. Stadtlober,
  • Edivandro Girotto,
  • Giliandro Farias,
  • Rodney M. do Nascimento,
  • Sergio F. Curcio,
  • Thiago Cazati,
  • Marta E. R. Dotto,
  • Juliana Eccher,
  • Leonardo N. Furini,
  • Hugo Gallardo,
  • Harald Bock,
  • Ivan H. Bechtold

DOI
https://doi.org/10.3762/bjoc.19.128
Journal volume & issue
Vol. 19, no. 1
pp. 1755 – 1765

Abstract

Read online

Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase. Photophysical analysis and numerical calculations assisted the interpretation of positive and negative charge carrier mobilities obtained from fitting the space charge limited regime of current vs voltage curves. The pyrene-based material demonstrated an electron mobility two orders of magnitude higher than the perylene one, indicating the potential of this class of materials as electron transporting layer.

Keywords