Determination of critical-sized defect of mandible in a rabbit model: Micro-computed tomography, and histological evaluation
Yue Wang,
Xiaoyan Zhang,
Shuang Mei,
Yunlong Li,
Anas Ameer Khan,
Shuai Guan,
Xiangjun Li
Affiliations
Yue Wang
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, PR China
Xiaoyan Zhang
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, PR China
Shuang Mei
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, PR China
Yunlong Li
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, PR China
Anas Ameer Khan
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, PR China
Shuai Guan
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, PR China
Xiangjun Li
Corresponding author.; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, PR China
Objective: To evaluate a rabbit model of mandibular box-shaped defects created through an intraoral approach and determine the minimum size defect that would not spontaneously heal during the rabbit's natural life (or critical-sized defect, CSD). Methods: Forty-five 6-month-old rabbits were randomly divided into five defect size groups (nine each). Mandibular box-shaped defects of different sizes (4, 5, 6, 8, and 10 mm) were created in each hemimandible, with the same width and depth (3 and 2 mm, respectively). Four, 8, and 12 weeks post-surgery, three animals per group were euthanized. New bone formation was assessed using micro-computed tomography (MCT) and histomorphometric analyses. Results: Box-shaped defects were successfully created in the buccal region between the incisor area and the anterior part of the mental foramen in rabbit mandibles. Twelve weeks post-surgery, MCT analysis showed that the defects in the 4, 5, and 6 mm groups were filled with new bone, while those in the 8 and 10 mm groups remained underfilled. Quantitative analysis revealed that the bone mass recovery percentage in the 8 and 10 mm groups was significantly lower than that in the other groups (p 0.05). Histomorphometric analysis indicated that the area of new bone formation in the 8 and 10 mm groups was significantly lower than that in the remaining groups (p 0.05). Conclusions: The dimensions of box-shaped CSD created in the rabbit mandible through an intraoral approach were 8 mm × 3 mm × 2 mm. This model may provide a clinically relevant base for future tissue engineering efforts in the mandible.