Molecular Biomedicine (Jun 2021)
miR-221/222 sponge abrogates tamoxifen resistance in ER-positive breast cancer cells through restoring the expression of ERα
Abstract
Abstract Tamoxifen resistance (TamR) prevents ER-positive breast cancer patients from benefitting from endocrine therapy, and miR-221 or miR-222 plays vital roles in inducing TamR. In this study, we designed synthetic sponges to reverse TamR by targeting these two miRs. First, we established a tamoxifen resistant breast cancer cell line (MCF-7TamR), we verified the high expressing level of these two miRs in TamR cells. miR-221 or miR-222 inhibitors rendered MCF-7TamR cells responsive to tamoxifen. Next, we designed a miR-221/222 sponge, which contains total 8 multi-antisense binding sites (MBSs) for these two onco-miRs, and inserted it into CMV promoter- or hTERT promoter-driven expressing vectors. After transfected miR-221/222 sponge expressing vectors into MCF-7TamR cells, we identified a strong interaction between miR-221/222 sponge and endogenous miR-221 or miR-222 by RNA pulldown assay. We also found that miR-221/222 sponge restored the expression of ERα and PTEN, arrested cells in G1 phase, and finally resulted in reduced cell growth and cell migration. Notably, miR-221/222 sponge expressing cells abrogates tamoxifen resistance through restoring the expression of ERα, suggesting that miR-221/222 sponge gene therapy especially driven by tumor specific promoter could provide an effective therapeutic approach against TamR in breast cancer.
Keywords