Conservation Letters (May 2020)

Achieving cost‐effective landscape‐scale forest restoration through targeted natural regeneration

  • Renato Crouzeilles,
  • Hawthorne L. Beyer,
  • Lara M. Monteiro,
  • Rafael Feltran-Barbieri,
  • Ana C. M. Pessôa,
  • Felipe S. M. Barros,
  • David B. Lindenmayer,
  • Eric D. S. M. Lino,
  • Carlos E. V. Grelle,
  • Robin L. Chazdon,
  • Marcelo Matsumoto,
  • Marcos Rosa,
  • Agnieszka E. Latawiec,
  • Bernardo B. N. Strassburg

DOI
https://doi.org/10.1111/conl.12709
Journal volume & issue
Vol. 13, no. 3
pp. n/a – n/a

Abstract

Read online

Abstract High costs of tree planting are a barrier to meeting global forest restoration targets. Natural forest regeneration is more cost‐effective than tree planting, but its potential to foster restoration at scale is poorly understood. We predict, map, and quantify natural regeneration potential within 75.5 M ha of deforested lands in the Brazilian Atlantic Forest. Of 34.1 M ha (26.4%) of current forest cover, 2.7 M ha (8.0%) regenerated naturally from 1996 to 2015. We estimate that another 2.8 M ha could naturally regenerate by 2035, and a further 18.8 M ha could be restored using assisted regeneration methods, thereby reducing implementation costs by US$ 90.6 billion (77%) compared to tree planting. These restored forests could sequester 2.3 GtCO2 of carbon, reduce the mean number of expected species at risk of extinction by 63.4, and reduce fragmentation by 44% compared to current levels. Natural regeneration planning is key for achieving cost‐effective large‐scale restoration.

Keywords