Electric-Field Control of Spin Diffusion Length and Electric-Assisted D’yakonov–Perel’ Mechanism in Ultrathin Heavy Metal and Ferromagnetic Insulator Heterostructure
Shijie Xu,
Bingqian Dai,
Houyi Cheng,
Lixuan Tai,
Lili Lang,
Yadong Sun,
Zhong Shi,
Kang L. Wang,
Weisheng Zhao
Affiliations
Shijie Xu
Fert Beijing Institute, Ministry of Industry and Information Technology Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
Bingqian Dai
Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
Houyi Cheng
Fert Beijing Institute, Ministry of Industry and Information Technology Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
Lixuan Tai
Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
Lili Lang
Shanghai Key Laboratory of Special Artificial Microstructure, Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Yadong Sun
Shanghai Key Laboratory of Special Artificial Microstructure, Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Zhong Shi
Shanghai Key Laboratory of Special Artificial Microstructure, Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Kang L. Wang
Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
Weisheng Zhao
Fert Beijing Institute, Ministry of Industry and Information Technology Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
Electric-field control of spin dynamics is significant for spintronic device applications. Thus far, effectively electric-field control of magnetic order, magnetic damping factor and spin–orbit torque (SOT) has been studied in magnetic materials, but the electric field control of spin relaxation still remains unexplored. Here, we use ionic liquid gating to control spin-related property in the ultra-thin (4 nm) heavy metal (HM) platinum (Pt) and ferromagnetic insulator (FMI) yttrium iron garnet (Y3Fe5O12, YIG) heterostructure. It is found that the anomalous Hall effect (AHE), spin relaxation time and spin diffusion length can be effectively controlled by the electric field. The anomalous Hall resistance is almost twice as large as at 0 voltage after applying a small voltage of 5.5 V. The spin relaxation time can vary by more than 50 percent with the electric field, from 41.6 to 64.5 fs. In addition, spin relaxation time at different gate voltage follows the reciprocal law of the electron momentum scattering time, which indicates that the D’yakonov–Perel’ mechanism is dominant in the Pt/YIG system. Furthermore, the spin diffusion length can be effectively controlled by an ionic gate, which can be well explained by voltage-modulated interfacial spin scattering. These results help us to improve the interface spin transport properties in magnetic materials, with great contributions to the exploration of new physical mechanisms and spintronics device.