BMC Genomic Data (Jun 2022)

Antagonistic regulatory effects of a single cis-acting expression quantitative trait locus between transcription and translation of the MRPL43 gene

  • Jooyeon Han,
  • Chaeyoung Lee

DOI
https://doi.org/10.1186/s12863-022-01057-7
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Heterogeneity of expression quantitative trait locus (eQTL) effects have been shown across gene expression processes. Knowledge on how to produce the heterogeneity is quite limited. This study aims to examine fluctuations in differential gene expression by alleles of sequence variants across expression processes. Results Genome-wide eQTL analyses with transcriptome-wide gene expression data revealed 20 cis-acting eQTLs associated simultaneously with mRNA expression, ribosome occupancy, and protein abundance. A 97 kb-long eQTL signal for mitochondrial ribosomal protein L43 (MRPL43) covered the gene, showing a heterogeneous effect size on gene products across expression stages. One allele of the eQTL was associated with increased mRNA expression and ribosome occupancy but decreased protein abundance. We examined the heterogeneity and found that the eQTL can be attributed to the independent functions of three nucleotide variants, with a strong linkage. NC_000010.11:g.100987606G > T, upstream of MRPL43, may regulate the binding affinity of transcription factors. NC_000010.11:g.100986746C > G, 3 bp from an MRPL43 splice donor site, may alter the splice site. NC_000010.11:g.100978794A > G, in the isoform with a long 3′-UTR, may strengthen the binding affinity of the microRNA. Individuals with the TGG haplotype at these three variants had higher levels of mRNA expression and ribosome occupancy than individuals with the GCA haplotype but lower protein levels, producing the flipped effect throughout the expression process. Conclusions These findings suggest that multiple functional variants in a linkage exert their regulatory functions at different points in the gene expression process, producing a complexity of single eQTLs.

Keywords