Frontiers in Oncology (Aug 2019)

An Open-Source Tool for Anisotropic Radiation Therapy Planning in Neuro-oncology Using DW-MRI Tractography

  • Kesshi Jordan,
  • Kesshi Jordan,
  • Olivier Morin,
  • Michael Wahl,
  • Michael Wahl,
  • Bagrat Amirbekian,
  • Bagrat Amirbekian,
  • Christopher Chapman,
  • Julia Owen,
  • Julia Owen,
  • Pratik Mukherjee,
  • Pratik Mukherjee,
  • Pratik Mukherjee,
  • Steve Braunstein,
  • Roland Henry,
  • Roland Henry,
  • Roland Henry

DOI
https://doi.org/10.3389/fonc.2019.00810
Journal volume & issue
Vol. 9

Abstract

Read online

There is evidence from histopathological studies that glioma tumor cells migrate preferentially along large white matter bundles. If the peritumoral white matter structures can be used to predict the likely trajectory of migrating tumor cells outside of the surgical margin, then this information could be used to inform the delineation of radiation therapy (RT) targets. In theory, an anisotropic expansion that takes large white matter bundle anatomy into account may maximize the chances of treating migrating cancer cells and minimize the amount of brain tissue exposed to high doses of ionizing radiation. Diffusion-weighted MRI (DW-MRI) can be used in combination with fiber tracking algorithms to model the trajectory of large white matter pathways using the direction and magnitude of water movement in tissue. The method presented here is a tool for translating a DW-MRI fiber tracking (tractography) dataset into a white matter path length (WMPL) map that assigns each voxel the shortest distance along a streamline back to a specified region of interest (ROI). We present an open-source WMPL tool, implemented in the package Diffusion Imaging in Python (DIPY), and code to convert the resulting WMPL map to anisotropic contours for RT in a commercial treatment planning system. This proof-of-concept lays the groundwork for future studies to evaluate the clinical value of incorporating tractography modeling into treatment planning.

Keywords