Annales Geophysicae (May 2017)
Geomagnetic activity and local time dependence of the distribution of ultra low-frequency wave power in azimuthal wavenumbers, <i>m</i>
Abstract
The azimuthal wavenumber m of ultra low-frequency (ULF) waves in the magnetosphere is a required parameter in the calculations of the diffusion rates of energetic electrons and protons in the magnetosphere, as electrons and protons of drift frequency ωd have been shown to radially diffuse due to resonant interaction with ULF waves of frequency ω = mωd. However, there are difficulties in estimating m, due to lack of multipoint measurements. In this paper we use magnetic field measurements at geosynchronous orbit to calculate the cross-spectrogram power and phase differences between time series from magnetometer pairs. Subsequently, assuming that ULF waves of a certain frequency and m would be observed with a certain phase difference between two azimuthally aligned magnetometers, the fraction of the total power in each phase difference range is calculated. As part of the analysis, both quiet-time and storm-time distributions of power per m number are calculated, and it is shown that during active times, a smaller fraction of total power is confined to lower m than during quiet times. It is also shown that in the dayside region, power is distributed mostly to the lowest azimuthal wavenumbers m = 1 and 2, whereas on the nightside it is more equally distributed to all m that can be resolved by the azimuthal separation between two spacecraft.