Earth Surface Dynamics (Aug 2018)

GlobR2C2 (Global Recession Rates of Coastal Cliffs): a global relational database to investigate coastal rocky cliff erosion rate variations

  • M. Prémaillon,
  • V. Regard,
  • T. J. B. Dewez,
  • Y. Auda

DOI
https://doi.org/10.5194/esurf-6-651-2018
Journal volume & issue
Vol. 6
pp. 651 – 668

Abstract

Read online

Rocky coast erosion (i.e., cliff retreat) is caused by a complex interaction of various forcings that can be marine, subaerial or due to rock mass properties. From Sunamura's seminal work in 1992, it is known that cliff retreat rates are highly variable over at least four orders of magnitude, from 1 to 10 mm yr−1. While numerous local studies exist and explain erosion processes at specific sites, there is a lack of knowledge at the global scale. In order to quantify and rank the various parameters influencing erosion rates, we compiled existing local studies into a global database called GlobR2C2 (which stands for Global Recession Rates of Coastal Cliffs). This database reports erosion rates from publications, cliff setting and measurement specifications; it is compiled from peer-reviewed articles and national databases. In order to be homogeneous, marine and climatic forcings were recorded from global models and reanalyses. Currently, GlobR2C2 contains 58 publications that represent 1530 studied cliffs and more than 1680 estimated erosion rate. A statistical analysis was conducted on this database to explore the links between erosion rates and forcings at a global scale. Rock resistance, inferred using the criterion of Hoek and Brown (1997), is the strongest signal explaining variation in erosion rate. Median erosion rates are 2.9 cm yr−1 for hard rocks, 10 cm yr−1 for medium rocks and 23 cm yr−1 for weak rocks. Concerning climate, only the number of frost days (number of day per year below 0 °C) for weak rocks shows a significant, positive, trend with erosion rate. The other climatic and marine forcings do not show any clear or significant relationship with cliff retreat rate. In this first version, GlobR2C2, with its current encompassing vision, has broad implications. Critical knowledge gaps have come to light and prompt a new coastal rocky shore research agenda. Further study of these questions is paramount if we one day hope to answer questions such as what the coastal rocky shore response to sea-level rise or increased storminess may be.