BMC Medicine (Sep 2021)

Combined homologous recombination repair deficiency and immune activation analysis for predicting intensified responses of anthracycline, cyclophosphamide and taxane chemotherapy in triple-negative breast cancer

  • Gaoming Liao,
  • Zedong Jiang,
  • Yiran Yang,
  • Cong Zhang,
  • Meiting Jiang,
  • Jiali Zhu,
  • Liwen Xu,
  • Aimin Xie,
  • Min Yan,
  • Yunpeng Zhang,
  • Yun Xiao,
  • Xia Li

DOI
https://doi.org/10.1186/s12916-021-02068-4
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Triple-negative breast cancer (TNBC) is a clinically aggressive disease with abundant variants that cause homologous recombination repair deficiency (HRD). Whether TNBC patients with HRD are sensitive to anthracycline, cyclophosphamide and taxane (ACT), and whether the combination of HRD and tumour immunity can improve the recognition of ACT responders are still unknown. Methods Data from 83 TNBC patients in The Cancer Genome Atlas (TCGA) was used as a discovery cohort to analyse the association between HRD and ACT chemotherapy benefits. The combined effects of HRD and immune activation on ACT chemotherapy were explored at both the genome and the transcriptome levels. Independent cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO) were adopted to validate our findings. Results HRD was associated with a longer ACT chemotherapy failure-free interval (FFI) with a hazard ratio of 0.16 (P = 0.004) and improved patient prognosis (P = 0.0063). By analysing both HRD status and ACT response, we identified patients with a distinct TNBC subtype (ACT-S&HR-P) that showed higher tumour lymphocyte infiltration, IFN-γ activity and NK cell levels. Patients with ACT-S&HR-P had significantly elevated immune inhibitor levels and presented immune activation associated with the increased activities of both innate immune cells and adaptive immune cells, which suggested treatment with immune checkpoint blockade as an option for this subtype. Our analysis revealed that the combination of HRD and immune activation enhanced the efficiency of identifying responders to ACT chemotherapy (AUC = 0.91, P = 1.06e−04) and synergistically contributed to the clinical benefits of TNBC patients. A transcriptional HRD signature of ACT response-related prognostic factors was identified and independently validated to be significantly associated with improved survival in the GEO cohort (P = 0.0038) and the METABRIC dataset (P < 0.0001). Conclusions These findings highlight that HR deficiency prolongs FFI and predicts intensified responses in TNBC patients by combining HRD and immune activation, which provides a molecular basis for identifying ACT responders.

Keywords