iScience (Jan 2023)

Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome

  • Kentaro Tojo,
  • Natsuhiro Yamamoto,
  • Nao Tamada,
  • Takahiro Mihara,
  • Miyo Abe,
  • Mototsugu Nishii,
  • Ichiro Takeuchi,
  • Takahisa Goto

Journal volume & issue
Vol. 26, no. 1
p. 105748

Abstract

Read online

Summary: Acute respiratory distress syndrome (ARDS) with COVID-19 is aggravated by hyperinflammatory responses even after the peak of the viral load has passed; however, its underlying mechanisms remain unclear. In the present study, analysis of the alveolar tissue injury markers and epithelial cell death markers in patients with COVID-19 revealed that COVID-19-induced ARDS was characterized by alveolar epithelial necrosis at an early disease stage. Serum levels of HMGB-1, one of the DAMPs released from necrotic cells, were also significantly elevated in these patients. Further analysis using a mouse model mimicking COVID-19-induced ARDS showed that the alveolar epithelial cell necrosis involved two forms of programmed necrosis, namely necroptosis, and pyroptosis. Finally, the neutralization of HMGB-1 attenuated alveolar tissue injury in the mouse model. Collectively, necrosis, including necroptosis and pyroptosis, is the predominant form of alveolar epithelial cell death at an early disease stage and subsequent release of DAMPs is a potential driver of COVID-19-induced ARDS.

Keywords