BioImpacts (Jul 2022)
A fuzzy logic-based computational method for the repurposing of drugs against COVID-19
Abstract
Introduction: COVID-19 has spread out all around the world and seriously interrupted human activities. Being a newfound disease, not only many aspects of the disease are unknown, but also there is not an effective medication to cure the disease. Besides, designing a drug is a time-consuming process and needs large investment. Hence, drug repurposing techniques, employed to discover the hidden benefits of the existing drugs, maybe a useful option for treating COVID-19. Methods: The present study exploits the drug repositioning concepts and introduces some candidate drugs which may be effective in controlling COVID-19. The suggested method consists of three main steps. First, the required data such as the amino acid sequences of targets and drug-target interactions are extracted from the public databases. Second, the similarity score between the targets (protein/enzymes) and genome of SARS-COV-2 is computed using the proposed fuzzy logic-based method. Since the classical approaches yield outcomes which may not be useful for the real-world applications, the fuzzy technique can address the issue. Third, after ranking targets based on the obtained scores, the usefulness of drugs affecting them is examined for managing COVID-19. Results: The results indicate that antiviral medicines, designed for curing hepatitis C, may also cure COVID-19. According to the findings, ribavirin, simeprevir, danoprevir, and XTL-6865 may be helpful in controlling the disease. Conclusion: It can be concluded that the similarity-based drug repurposing techniques may be the most suitable option for managing emerging diseases such as COVID-19 and can be applied to a wide range of data. Also, fuzzy logic-based scoring methods can produce outcomes which are more consistent with the real-world biological applications than others.
Keywords