Cancers (May 2021)

Inactivating Mutations of the <i>IK</i> Gene Weaken Ku80/Ku70-Mediated DNA Repair and Sensitize Endometrial Cancer to Chemotherapy

  • Chao Gao,
  • Guangxu Jin,
  • Elizabeth Forbes,
  • Lingegowda S. Mangala,
  • Yingmei Wang,
  • Cristian Rodriguez-Aguayo,
  • Paola Amero,
  • Emine Bayraktar,
  • Ye Yan,
  • Gabriel Lopez-Berestein,
  • Russell R. Broaddus,
  • Anil K. Sood,
  • Fengxia Xue,
  • Wei Zhang

DOI
https://doi.org/10.3390/cancers13102487
Journal volume & issue
Vol. 13, no. 10
p. 2487

Abstract

Read online

IK is a mitotic factor that promotes cell cycle progression. Our previous investigation of 271 endometrial cancer (EC) samples from the Cancer Genome Atlas (TCGA) dataset showed IK somatic mutations were enriched in a cluster of patients with high-grade and high-stage cancers, and this group had longer survival. This study provides insight into how IK somatic mutations contribute to EC pathophysiology. We analyzed the somatic mutational landscape of IK gene in 547 EC patients using expanded TCGA dataset. Co-immunoprecipitation and mass spectrometry were used to identify protein interactions. In vitro and in vivo experiments were used to evaluate IK’s role in EC. The patients with IK-inactivating mutations had longer survival during 10-year follow-up. Frameshift and stop-gain were common mutations and were associated with decreased IK expression. IK knockdown led to enrichment of G2/M phase cells, inactivation of DNA repair signaling mediated by heterodimerization of Ku80 and Ku70, and sensitization of EC cells to cisplatin treatment. IK/Ku80 mutations were accompanied by higher mutation rates and associated with significantly better overall survival. Inactivating mutations of IK gene and loss of IK protein expression were associated with weakened Ku80/Ku70-mediated DNA repair, increased mutation burden, and better response to chemotherapy in patients with EC.

Keywords