International Journal of Ceramic Engineering & Science (May 2024)
Effect of alkali metal salt addition on disintegration of titania particles precipitated from tetraethyl orthotitanate in ethanol
Abstract
Abstract Inline (or in situ) photon density wave spectroscopy was used to monitor the disintegration of secondary titania particles into their primary particles. Photon density wave spectroscopy can be applied to determine the reduced scattering coefficient μs′ of a dispersion without dilution or calibration, and thus enables process analysis in materials that are usually unsuitable for established particle characterization techniques. In this work, amorphous titania particles were precipitated from tetraethyl orthotitanate in ethanol by addition of water in presence of different alkali metal salts (NaCl, KCl, CsCl, K2SO4) with concentrations between 0 and 1.6 mM. The present results suggest that the synthesized titania secondary particles disintegrate into their primary particles if the electrostatic repulsion between the primary particles is promoted. This can be achieved by an increased alkali chloride concentration in the synthesis or by addition of larger alkali metal ions. In contrast, the particles are only weakly charged upon addition of sulfate ions, and the disintegration stops. The conclusions drawn from photon density wave spectroscopy results are supported by gravimetric determination of the particle yield, dynamic light scattering measurements, zeta‐potential measurements, and electron micrographs. Additionally, the disintegration was driven to completion by addition of hydrochloric acid to create a transparent suspension of titania primary particles as small as 4.7 nm.
Keywords