Water (Aug 2020)

Is Clustering Time-Series Water Depth Useful? An Exploratory Study for Flooding Detection in Urban Drainage Systems

  • Jiada Li,
  • Daniyal Hassan,
  • Simon Brewer,
  • Robert Sitzenfrei

DOI
https://doi.org/10.3390/w12092433
Journal volume & issue
Vol. 12, no. 9
p. 2433

Abstract

Read online

As sensor measurements emerge in urban water systems, data-driven unsupervised machine learning algorithms have drawn tremendous interest in event detection and hydraulic water level and flow prediction recently. However, most of them are applied in water distribution systems and few studies consider using unsupervised cluster analysis to group the time-series hydraulic-hydrologic data in stormwater urban drainage systems. To improve the understanding of how cluster analysis contributes to flooding location detection, this study compared the performance of K-means clustering, agglomerative clustering, and spectral clustering in uncovering time-series water depth dissimilarity. In this work, the water depth datasets are simulated by an urban drainage model and then formatted for a clustering problem. Three standard performance evaluation metrics, namely the silhouette coefficient index, Calinski–Harabasz index, and Davies–Bouldin index are employed to assess the clustering performance in flooding detection under various storms. The results show that silhouette coefficient index and Davies–Bouldin index are more suitable for assessing the performance of K-means and agglomerative clustering, while the Calinski–Harabasz index only works for spectral clustering, indicating these clustering algorithms are metric-dependent flooding indicators. The results also reveal that the agglomerative clustering performs better in detecting short-duration events while K-means and spectral clustering behave better in detecting long-duration floods. The findings of these investigations can be employed in urban stormwater flood detection at the specific junction-level sites by using the occurrence of anomalous changes in water level of correlated clusters as flood early warning for the local neighborhoods.

Keywords