Journal of Sensor and Actuator Networks (Jun 2022)

Optimization of Pico-eNB Tx Power and the Effects of Picocell Range Expansion in Multiband HetNet

  • Takumi Yasaka,
  • Kentaro Yoda,
  • Hiroyuki Otsuka

DOI
https://doi.org/10.3390/jsan11020027
Journal volume & issue
Vol. 11, no. 2
p. 27

Abstract

Read online

The use of heterogeneous networks (HetNets) that combine macrocells and picocells in the same coverage is effective in increasing system capacity and improving user throughput. The use of high carrier frequency bands is also expected to help achieving higher data rates because it promises vast amounts of signal bandwidth. Therefore, multiband HetNets with picocells operating at high carrier frequency bands have attracted significant attention with the aim of increasing system capacity and achieving a high user throughput in fifth-generation mobile systems and beyond. In HetNet deployments, a picocell range expansion (CRE) technique that virtually expands the picocell coverage is well known to allow more user equipment (UE) to access the picocell providing a fixed cell selection offset (CSO) for all UE. Thus far, there has not been sufficient research on optimizing the transmission (Tx) power of pico-evolved node Bs (eNBs) operating at high carrier frequency bands in multiband HetNets. In addition, the effects of CRE in multiband HetNets have not been clarified. In this paper, we first investigated the optimal Tx power of pico-eNB in a multiband HetNet combining macrocells operating at 2 GHz and picocells operating at 4.5 GHz band with a wider signal bandwidth using system-level computer simulations. Then, from the user throughput perspective, we investigated the effects of CRE providing a positive CSO for UE using two pico-eNB Tx powers close to the optimal value. Using these results, we discussed how to choose the pico-eNB Tx power when CRE was activated and validated the design method for a multiband HetNet.

Keywords