npj 2D Materials and Applications (Dec 2021)
Iron-rich talc as air-stable platform for magnetic two-dimensional materials
Abstract
Abstract Intrinsically magnetic layered materials – especially monolayers – suffer from the lack of ambient stability and mostly exhibit magnetic ordering only at cryogenic temperatures. These restrains impose a great challenge for the integration of two-dimensional magnetic materials into future technologies. We propose to overcome this by exploiting phyllosilicates, such as iron-rich talc. Via combined magnetic force microscopy in applied external magnetic fields, superconducting quantum interference device magnetometry, first-principle calculations, and structural analysis, we demonstrate that incorporated iron ions in talc are in a very robust high spin state, resulting in a weak ferromagnetic behavior at room temperature. Iron-rich talc can be thinned down to a monolayer, remaining fully stable under ambient conditions, and retaining magnetic properties even in monolayers. Finally, we propose iron-rich end members of the phyllosilicates as very promising platforms for air-stable magnetic monolayers.