Journal of Integrative Neuroscience (Jun 2021)
Behavioral characterization in MPTP/p mouse model of Parkinson’s disease
Abstract
We evaluated the practicability of using the rarely utilized C57BL/6N mouse as a Parkinson’s disease model established via the acute MPTP/probenecid (MPTP/p) protocol. We confirmed dopaminergic degeneration in terms of decreased expression levels of tyrosine hydroxylase in the substantia nigra and striatum of MPTP/p-lesioned mice. In addition, acute MPTP/p-lesioned mice demonstrated initial motor dysfunctions followed by spontaneous recovery. Interestingly, these MPTP/p-lesioned mice exhibited anxiolytic and antidepressive behaviors upon recovery from these motor deficits. Additionally, increased expression of norepinephrine transporters in several brain regions, including the hippocampus, medial prefrontal cortex, and striatum, and an elevated rate of adult neurogenesis (in terms of increased numbers of doublecortin-positive neuroblasts) in the hippocampus were observed after recovery from motor dysfunctions. We suggest that the emotional alterations observed under these experimental conditions may be associated with enhanced adult neurogenesis, increased levels of norepinephrine transporters, and/or a possible interplay between these two factors. Consequently, this acute MPTP/p model adequately satisfies the criteria for the validity of a Parkinson’s disease model regarding dopaminergic loss and motor impairment. However, the non-motor findings may offer novel evidence against the practicability of utilizing the acute MPTP/p-lesioned mice for modeling the emotional aberrations found in Parkinson’s disease patients.
Keywords