Biomolecules (Aug 2021)

A Novel Method for the Determination of Vitamin D Metabolites Assessed at the Blood-Cerebrospinal Fluid Barrier

  • Sieglinde Zelzer,
  • Andreas Meinitzer,
  • Markus Herrmann,
  • Walter Goessler,
  • Dietmar Enko

DOI
https://doi.org/10.3390/biom11091288
Journal volume & issue
Vol. 11, no. 9
p. 1288

Abstract

Read online

The brain’s supply with vitamin D is poorly understood. Therefore, the present study aimed to determine 25-hydroxy vitamin D3 (25(OH)D) and 24,25-dihydroxy vitamin D (24,25(OH)2D3) in serum and cerebrospinal fluid (CSF) from individuals with intact and disturbed brain-CSF-barrier (BCB) function. In 292 pairs of serum and CSF samples the vitamin D metabolites were measured with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). CSF/serum ratios (QALB, Q25(OH)D, Q24,25(OH)2D3) were calculated. Median (IQR) serum concentrations of 25(OH)D and 24,25(OH)2D3 were 63.8 (43.4–83.9) nmol/L and 4.2 (2.2–6.2) nmol/L. The CSF concentrations of both metabolites accounted for 3.7 and 3.3% of the respective serum concentrations. Serum 25(OH)D correlated inversely with Q25(OH)D and Q24,25(OH)2D3 implying a more efficient transport of both metabolites across the BCB when the serum concentration of 25(OH)D is low. In patients with BCB dysfunction, the CSF concentrations and the CSF/serum ratios of both vitamin D metabolites were higher than in individuals with intact BCB. The CSF concentrations of 25(OH)D and 24,25(OH)2D3 depend on BCB function and the respective serum concentrations of both metabolites. Higher vitamin D metabolite concentrations in CSF of patients with impaired BCB function may be due to passive diffusion across the BCB.

Keywords