Scientific Reports (Sep 2024)
EDB-FN-targeted probes for near infrared fluorescent imaging and positron emission tomography imaging of breast cancer in mice
Abstract
Abstract The extra domain B splice variant of fibronectin (EDB-FN), which is overexpressed in several cancers, is an approved diagnostic and therapeutic target of cancers. The aim of this study was to evaluate the EDB-FN-targeting peptide EDBp as a noninvasive imaging modality for molecular imaging of breast cancer in mice. Western blot, flow cytometry and immunofluorescence were used to assess the expression level of EDB-FN and its binding to EDRp in MCF7, SKBR3, 4T1, EMT6, MDA-MB-231 and MDA-MB-453 cells. Establishment MDA-MB-231-luc cells-based subcutaneous tumor model mice or pulmonary metastasis model mice. The EDRp molecular probes to perform fluorescent probes for near-infrared fluorescence (NIRF)·and PET imaging of model mice. Our results demonstrate that EDBp-Cy5 had a strong binding ability to the MDA-MB-231 cells and exhibited specific tumor accumulation in MDA-MB-231 subcutaneous and pulmonary metastasis model mice. Importantly, the EDBp peptide-based radiotracer [18F]-AlF-NOTA-EDBp provided excellent diagnostic value for positron emission tomography (PET) imaging of breast cancer, especially in subcutaneous model mice. The uptake of [18F]-AlF-NOTA-EDBp in subcutaneous tumors (6.53 ± 0.89%, ID/g) was unexpectedly higher than that in the kidney (4.96 ± 0.20, %ID/g). The high tumor uptake of these probes in mice suggests their potential for application in imaging of EDB-FN-positive breast cancer for disease staging of regional and distant metastases.
Keywords