Latin-American Journal of Computing (Jul 2024)

A study on the impact of data balance on rainfall prediction through artificial neural networks using surface microwave radiometers

  • Lourenço José Cavalcante Neto,
  • Alan James Peixoto Calheiros

Journal volume & issue
Vol. 11, no. 2
pp. 51 – 59

Abstract

Read online

The National Institute for Space Research (INPE) has been a partner in significant projects that conduct atmospheric investigations impacting various sectors, such as the Amazon Tall Tower Observatory (ATTO) project. Since 2009, the project has conducted studies on the interactions between climate and the Amazon forest. ATTO has played an essential role in providing large volumes of data obtained by meteorological sensors, contributing to a deeper understanding of the atmospheric dynamics of the region. In a landscape where Artificial Intelligence-based rainfall forecast models gain prominence, this study explores the imbalance of data from the ATTO Campina field experiment and its influence on short-term rainfall forecasts using Artificial Neural Networks (ANNs). Metrics such as MAE, RMSE, and POD, as well as FAR indices, were applied in the assessment and revealed the connection between data balance and forecast results. More balanced data or data with greater weights for different rainfall ranges yield better results. The study emphasizes the importance of reliable data for training rain forecast models, aiming to improve the dexterity of these models. This approach is fundamental to increase the reliability of these models in real environments.

Keywords